Aspose.Imaging for .NET 19.9 - Release Notes

Contents
[ ]
Key Summary Category
IMAGINGNET-3457  Support optimization strategy in basic raster image filtering operations Feature
IMAGINGNET-3382  Support optimization strategy in dithering operations in RasterCachedImage class Feature
IMAGINGNET-3456  Support optimization strategy in basic image Resize operations Feature
IMAGINGNET-3403  Allow speed or memory optimization strategies for Bmp format Feature
IMAGINGNET-3495  Rotation of Image Feature
IMAGINGNET-3487  Tiff inverts black and white after saving or transforming Enhancement
IMAGINGNET-3448  EMF Generation is Too Slow Enhancement
IMAGINGNET-3400  Jpg not properly converted to PNG Enhancement
IMAGINGNET-3506  Optimize a process of exporter from SVG to raster formats. Enhancement
IMAGINGNET-3395  EMF not properly converted to SVG Enhancement
IMAGINGNET-3459  SVG to PNG - incorrect conversion Enhancement
IMAGINGNET-3464  After conversion .emf to .png some characters are not recognized correctly Enhancement

Psd off notice:

Please switch to Aspose.PSD for PSD loading functionality. The functionality will be removed in the nearest releases of Aspose.Imaging

Public API changes:

Added APIs:

Method    Aspose.Imaging.FileFormats.Djvu.DjvuImage.NormalizeAngle(System.Boolean,Aspose.Imaging.Color)

Method    Aspose.Imaging.FileFormats.Gif.GifImage.NormalizeAngle(System.Boolean,Aspose.Imaging.Color)

Method    Aspose.Imaging.FileFormats.Tiff.TiffImage.NormalizeAngle(System.Boolean,Aspose.Imaging.Color)

Method    Aspose.Imaging.Matrix.#ctor(Aspose.Imaging.Matrix)

Method    Aspose.Imaging.Metered.Equals(System.Object)

Method    Aspose.Imaging.RasterImage.GetSkewAngle

Method    Aspose.Imaging.RasterImage.NormalizeAngle

Method    Aspose.Imaging.RasterImage.NormalizeAngle(System.Boolean,Aspose.Imaging.Color)

Property    Aspose.Imaging.FileFormats.Emf.Emf.Objects.EmfText.GlyphIndexBuffer

h2. Removed APIs:

Usage Examples:

Edit

IMAGINGNET-3382 Support optimization strategy in dithering operations in RasterCachedImage class

// Setting a memory limit of 50 megabytes for target loaded image using (var image = Image.Load(imageFilePath, new LoadOptions() { BufferSizeHint = 50 })) { // perform dithering operation image.Dither(DitheringMethod.FloydSteinbergDithering, 1); }

IMAGINGNET-3456 Support optimization strategy in basic image Resize operations

// Setting a memory limit of 50 megabytes for target loaded image using (var image = Image.Load(imageFilePath, new LoadOptions() { BufferSizeHint = 50 })) { // perform Resize operation image.Resize(300, 200, ResizeType.LanczosResample); }

IMAGINGNET-3487 Tiff inverts black and white after saving or transforming 

using (Image image = Image.Load(“sampletiff.tiff”)) {     image.Save(“output.tiff”, new TiffOptions(TiffExpectedFormat.TiffNoCompressionRgb)); }

IMAGINGNET-3457 Support optimization strategy in basic raster image filtering operations

using Aspose.Imaging.ImageFilters.FilterOptions;

// Limit memory usage (50 Mb) for the “BigRectangularFilter” filtering using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { FilterOptionsBase filterOptions = new BigRectangularFilterOptions(); rasterImage.Filter(rasterImage.Bounds, filterOptions); rasterImage.Save(“BigRectangularFilter.png”) }

// Limit memory usage (50 Mb) for the “SmallRectangularFilter” filtering using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { FilterOptionsBase filterOptions = new SmallRectangularFilterOptions(); rasterImage.Filter(rasterImage.Bounds, filterOptions); rasterImage.Save(“SmallRectangularFilter.png”) }

// Limit memory usage (50 Mb) for the “MedianFilter” filtering using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { FilterOptionsBase filterOptions = new MedianFilterOptions(6 /size/); rasterImage.Filter(rasterImage.Bounds, filterOptions); rasterImage.Save(“MedianFilter.png”) }

// Limit memory usage (50 Mb) for the “GaussWienerFilter” filtering using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { FilterOptionsBase filterOptions = new GaussWienerFilterOptions(5 /radius/, 1.5 /smooth/) { Brightness = 1, Snr = 0.003 }; rasterImage.Filter(rasterImage.Bounds, filterOptions); rasterImage.Save(“GaussWienerFilter.png”) }

// Limit memory usage (50 Mb) for the “MotionWienerFilter” filtering using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { FilterOptionsBase filterOptions = new MotionWienerFilterOptions(10 /length/, 1 /smooth/, 0 /angle/) { Brightness = 1, Snr = 0.007 }; rasterImage.Filter(rasterImage.Bounds, filterOptions); rasterImage.Save(“MotionWienerFilter.png”) }

// Limit memory usage (50 Mb) for the “GaussianBlurFilter” filtering using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { FilterOptionsBase filterOptions = new GaussianBlurFilterOptions(5 /radius/, 4 /sigma/); rasterImage.Filter(rasterImage.Bounds, filterOptions); rasterImage.Save(“GaussianBlurFilter.png”) }

// Limit memory usage (50 Mb) for the “SharpenFilter” filtering using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { FilterOptionsBase filterOptions = new SharpenFilterOptions(); rasterImage.Filter(rasterImage.Bounds, filterOptions); rasterImage.Save(“SharpenFilter.png”) }

// Limit memory usage (50 Mb) for the “BilateralSmoothingFilter” filtering using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { FilterOptionsBase filterOptions = new BilateralSmoothingFilterOptions(3 /size/); rasterImage.Filter(rasterImage.Bounds, filterOptions); rasterImage.Save(“BilateralSmoothingFilter.png”) }

// Limit memory usage (50 Mb) for the “BinarizeFixed” filtering operation using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { rasterImage.BinarizeFixed(180 /threshold/); rasterImage.Save(“BinarizeFixed.png”) }

// Limit memory usage (50 Mb) for the “BinarizeOtsu” filtering operation using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { rasterImage.BinarizeOtsu(); rasterImage.Save(“BinarizeOtsu.png”) }

// Limit memory usage (50 Mb) for the “BinarizeBradley” filtering operation using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { rasterImage.BinarizeBradley(-2 /brightness difference/); rasterImage.Save(“BinarizeBradley.png”) }

// Limit memory usage (50 Mb) for the “Grayscale” filtering operation using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { rasterImage.Grayscale(); rasterImage.Save(“Grayscale.png”) }

// Limit memory usage (50 Mb) for the “AdjustBrightness” filtering operation using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { rasterImage.AdjustBrightness(70 /brightness/); rasterImage.Save(“AdjustBrightness.png”) }

// Limit memory usage (50 Mb) for the “AdjustContrast” filtering operation using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { rasterImage.AdjustContrast(50 /contrast/); rasterImage.Save(“AdjustContrast.png”) }

// Limit memory usage (50 Mb) for the “AdjustGamma” filtering operation using (RasterImage rasterImage = (RasterImage)Image.Load(“inputImage.png”, new LoadOptions { BufferSizeHint = 50 })) { rasterImage.AdjustGamma(3 /gamma/); rasterImage.Save(“AdjustGamma.png”) }

IMAGINGNET-3448 EMF Generation is Too Slow

Testing must be performed on dll with obfuscation            double expectedResult = 3.0;            long imagingTime = this.TestEmfImagingPerformance();            long systemTime = this.TestEmfSystemPerformance();            double result = imagingTime * 1.0 / systemTime;            if (result > expectedResult)             {                throw new Exception(“Saving emf very slow!");             }

  private long TestEmfImagingPerformance()         {            //generate path            PointF[] polyline = new PointF[1000];            GraphicsPath path = new GraphicsPath();            Figure figure = new Figure();            path.AddFigure(figure);            for (int i = 0; i < 100; ++i)            {

               for (int j = 0; j < 1000; ++j)                {                    polyline[j] = new PointF(i * 10, j);                 }

               figure.AddShape(new PolygonShape(polyline));                            }

           Stopwatch sw = new Stopwatch();            sw.Start();            using (MemoryStream ms = new MemoryStream())             {                for (int n = 0; n < 100; n++)                {                    EmfRecorderGraphics2D emfGraphics =                        new EmfRecorderGraphics2D(new Rectangle(0, 0, 1000, 1000), new Size(1000, 1000),                            new Size(10, 10));                    emfGraphics.DrawPath(new Pen(Color.Red, 1), path);                    using (Image image = emfGraphics.EndRecording())                    {                        image.Save(ms);                     }

                   ms.Position = 0;                }            }

           long result = sw.ElapsedMilliseconds;            Console.WriteLine(“EMF Imaging time: " + result);            return result;        }

       private long TestEmfSystemPerformance()         {            //generate path            System.Drawing.PointF[] polyline = new System.Drawing.PointF[1000];            System.Drawing.Drawing2D.GraphicsPath path = new System.Drawing.Drawing2D.GraphicsPath();            for (int i = 0; i < 100; ++i)            {                for (int j = 0; j < 1000; ++j)                {                    polyline[j] = new System.Drawing.PointF(i * 10, j);                 }

               path.AddPolygon(polyline);            }

           Stopwatch sw = new Stopwatch();            sw.Start();            using (MemoryStream ms = new MemoryStream())             {                for (int n = 0; n < 100; n++)                {                    using (Graphics g = Graphics.FromHwnd(IntPtr.Zero))                    using (Metafile metafile = new Metafile(ms, g.GetHdc(), EmfType.EmfOnly))                    using (Graphics graphics = Graphics.FromImage(metafile))                    {                        graphics.DrawPath(new System.Drawing.Pen(System.Drawing.Color.Red, 1), path);                     }

                   ms.Position = 0;                }            }

           long result = sw.ElapsedMilliseconds;            Console.WriteLine(“EMF System time: " + result);            return result;        }

IMAGINGNET-3400 Jpg not properly converted to PNG

           string basePath = “D:";            string fileName = “mark.jpg”;            string inputFileName = Path.Combine(basePath, fileName);            string outputFileName = inputFileName + “.new.png”;            using (Image image = Image.Load(inputFileName))             {                image.Save(outputFileName, new PngOptions());             }

Due to the fact that in this file the color scheme of YCCK is used and the result of conversion into the RGB is different in different applications, the basis of the result is  the library LibJpeg-turbo https://libjpeg-turbo.org/. Background color = r=255, g=255, b=255 Drawing color = r=18, g=17, b=18 The approximate result of the conversion has MS Paint and Adobe Photoshop

IMAGINGNET-3506 Optimize a process of exporter from SVG to raster formats.

string input = “sample_car.svg”;

string output = “sample_car.png”;

Stopwatch sw = new Stopwatch();

sw.Start(); using (Image img = Image.Load(input)) { PngOptions options = new PngOptions(); SvgRasterizationOptions svgRasterizationOptions = new SvgRasterizationOptions(); svgRasterizationOptions.PageSize = img.Size; options.VectorRasterizationOptions = svgRasterizationOptions; img.Save(output, options); } sw.Stop();

Console.WriteLine(“Complete time : " + sw.Elapsed);

For example: Processing file sample_car.svg required 58 seconds before optimization and 27 seconds after. Processing file powerpoint_emf.emf.Svg required 36.80 seconds before optimization and 17.42 seconds after. Processing file page0000_Path.svg required 22:58.00 minutes before optimization and 00:32.79 seconds after. Moreover old workflow made corrupted image while new workflow creates correct image.

IMAGINGNET-3395 EMF not properly converted to SVG

input file: attachment:image7.emf output file: attachment:image7.emf.svg            string baseFolder = “D:";            string fileName = “image7.emf”;            string inputFileName = Path.Combine(baseFolder, fileName);            string outputFileName = inputFileName + “.svg”;            using (Image image = Image.Load(inputFileName))             {                image.Save(outputFileName, new SvgOptions(){VectorRasterizationOptions = new EmfRasterizationOptions(){PageSize = image.Size}});            }

IMAGINGNET-3459 SVG to PNG - incorrect conversion

input file: attachment:fw4.svg output file: attachment:fw4.svg.png string baseFolder = “D:"; string inputFileName = Path.Combine(baseFolder, “fw4.svg”); string outputFileName = inputFileName + “.png”; using (Image image = Image.Load(inputFileName, new SvgLoadOptions(){DefaultWidth = 800, DefaultHeight = 800})) {     image.Save(outputFileName, new PngOptions(){VectorRasterizationOptions = new SvgRasterizationOptions(){PageSize = image.Size}}); }

IMAGINGNET-3464 After conversion .emf to .png some characters are not recognized correctly

using (Image image = Image.Load(“source.emf”)) {     VectorRasterizationOptions options = new EmfRasterizationOptions();     options.BackgroundColor = Color.White;     options.PageSize = image.Size;     image.Save(“output.png”, new PngOptions { VectorRasterizationOptions = options }); }

IMAGINGNET-3495 Rotation of Image 

// Getting the skew angle from scanned text document using (RasterImage image = (RasterImage)Image.Load(“Sample_01_Upright.tif”)) {     float skewAngle = image.GetSkewAngle();     // … }

// Get rid of the skewed scan with default parameters using (RasterImage image = (RasterImage)Image.Load(“Sample_01_Upright.tif”)) {     image.NormalizeAngle();     image.Save(“result.tif”); }

// Get rid of the skewed scan with custom parameters using (RasterImage image = (RasterImage)Image.Load(“skewed.png”)) {     image.NormalizeAngle(false /do not resize/, Color.LightGray /background color/);     image.Save(“normalized.png”); }